If it's not what You are looking for type in the equation solver your own equation and let us solve it.
125x^2-8=0
a = 125; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·125·(-8)
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{10}}{2*125}=\frac{0-20\sqrt{10}}{250} =-\frac{20\sqrt{10}}{250} =-\frac{2\sqrt{10}}{25} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{10}}{2*125}=\frac{0+20\sqrt{10}}{250} =\frac{20\sqrt{10}}{250} =\frac{2\sqrt{10}}{25} $
| 1÷2(x-6)+1=2(x-10)-3 | | 3=10+p/2 | | x^2=17x-66 | | 8z-6z=12 | | 4x+17=x^2 | | -3y-(-9y)=12 | | 7-9v=-83 | | (5-7x)2=0 | | -6c-(-17c)=-11 | | n(n-18)=9 | | 1x-8=1 | | 3(8x5)=8 | | –2|x|=–6 | | 10x+3x+11=37 | | 2t+2t+(-19)=-3 | | 7/4=1/8s | | -1+4k=-49 | | 5w-4/3=-1/4w-1/4 | | 7x+1x=72 | | 20d-13d+1=8 | | 2.6/x=x/54 | | 6a+3/7=2a-1/3 | | 2.6/x=x=54 | | 5r-82=2r/3+9 | | 3e-53=3e/4+1 | | 45(5)+20x=485 | | –9.35=1.1k | | 4x^+40x+100=0 | | 5y/8+7=5y-203 | | -4(-2n-5)=8 | | 3y-46=5y/6+6 | | 45(5+(20x))=485 |